Bluetooth Module Datasheet

Model: SJR-BTM571

Version: V1.0

2022-03-03

Sky Jiarun Technologies Co., Ltd.

Tel: (0755)85279490

E-mail: sales@tianjiarun.com

Web: www.tianjiarun.com

Baoan, Shenzhen

List of Contents

1 Introduction	3
2 Key Features	3
3 Applications	4
4 Block Diagram	4
5 General specifications	4
6 Module Package Information	5
6.1 Pinout Diagram and package dimensions	5
6.2 Module Pin descriptions	6
7 Electrical Characteristics	10
7.1 Absolute Maximum Ratings	10
7.2 Recommended Operating Conditions	10
8 Recommended reflow temperature profile	12

1 Introduction

Sky Jiarun Technologies introduces the pioneer of the Bluetooth 5.3 modules SJR-BTM571 which is a high performance, cost effective, low power and compact solution. The Bluetooth module provides a complete 2.4GHz Bluetooth system based on the QCC5171 WLCSP chipset which is a single chip radio and baseband IC for Bluetooth 2.4GHz systems. This module is fully qualified single-chip dual mode Bluetooth@v5.3 system.

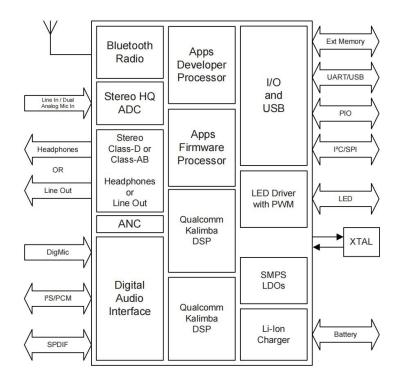
2 Key Features

BTM571(QCC5171) Features

- Qualified to Bluetooth v5.3 specification
- Dual 240 MHz Qualcomm® Kalimba[™] audio DSP
- 32/80 MHz Developer Processor for applications
- Firmware Processor for system
- Flexible QSPI flash programmable platform
- High-performance 24-bit stereo audio interface
- Digital and analog microphone interfaces
- Flexible PIO controller and LED pins with PWM support
- Serial interfaces: UART, Bit Serializer (I² C/SPI), USB 2.0
- Advanced audio algorithms
- Active Noise Cancellation:Hybrid, Feedforward, and Feedback modes, using Digital or Analog Mics, enabled using license keys available from Qualcomm®
- Qualcomm[®] aptX[™] and aptX HD Audio
- aptX Adaptive, enabled using license key
- Qualcomm® cVc[™] Noise Cancellation Technology,enabled using license key
- Integrated PMU: Dual SMPS for system/digital circuits, Integrated Li-ion battery charger

Application subsystem

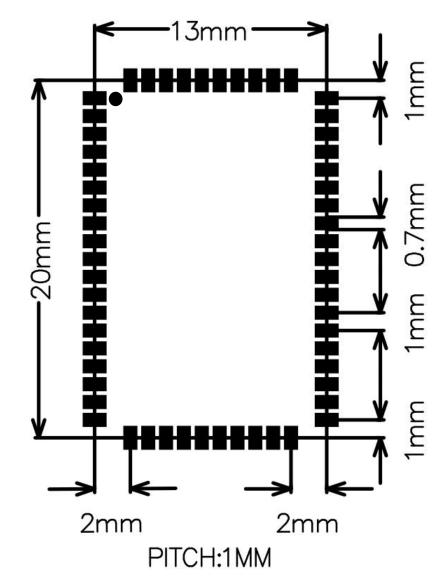
- Dual-core application subsystem 32/80MHz operation
- 32-bit Firmware Processor (reserved for system use) executes:
 - Bluetooth upper stack
 - Profiles
 - House-keeping code
- 32-bit Developer Processor executes:
 - Developer applications
- Both cores execute code from external flash memory using QSPI clocked at 32 MHz or 80 MHz
- On-chip caches per core enable optimized performance and power consumption


Bluetooth subsystem

- Qualified to Bluetooth v5.3 specification including 2 Mbps Bluetooth Low Energy and Bluetooth Low Energy Isochronous Channels
- Qualcomm[®] Bluetooth High Speed Link
- Single ended antenna connection with on-chip balun and Tx/Rx switch
- Bluetooth, Bluetooth Low Energy, and mixed topologies supported
- Class 1 support

3 Applications

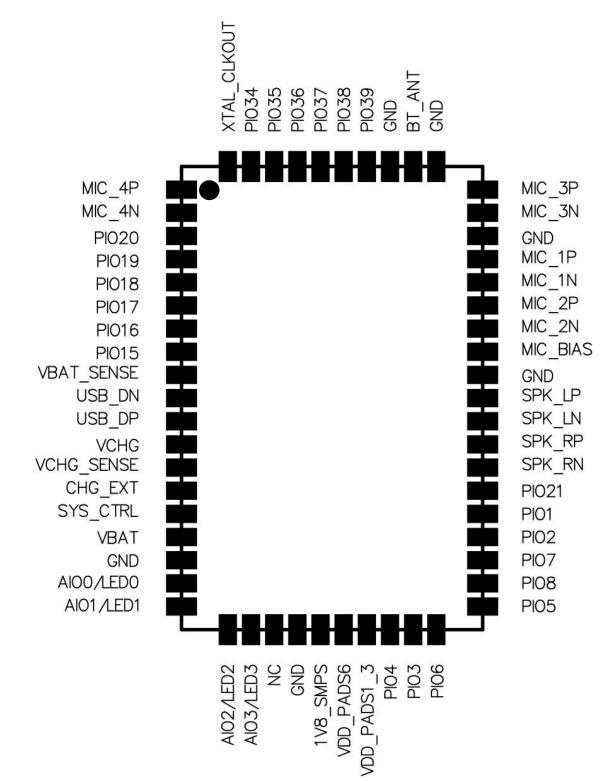
- Wired/wireless stereo headsets/headphones
- Qualcomm TrueWireless[™] stereo earbuds


4 Block Diagram

5 General specifications

Model Name	SJR-BTM571	
Product Description	Bluetooth 5.3 Class1.5 Module	
Bluetooth Standard	Bluetooth 5.3	
Chipset	QCC5171 WLCSP	
Dimension	13mm x 20mm x 2.8mm	
Operating Conditions		
Voltage	2.8~4.3V	
Temperature	-40∼+85℃	
Storage Temperature	-40∼+85 ℃	
Electrical Specifications		
Frequency Range	2402~2480MHz	
Maximum RF Transmit Power	13dBm	
π /4 DQPSK Receive Sensitivity	-94dBm	
8DPSK Receive Sensitivity	-88dBm	

6 Module Package Information



6.1 Pinout Diagram and package dimensions

Recommended PCB layout footprint

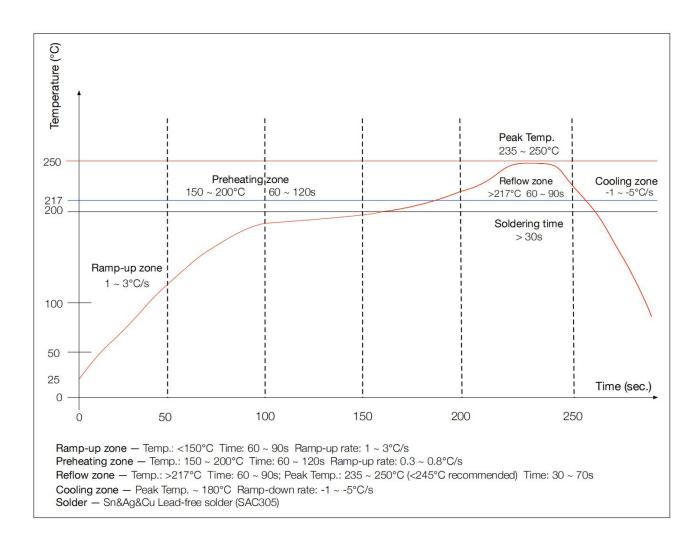
6.2 Module Pin descriptions

Pin#	Pin Name	Pin type	Description
			Microphone differential 4 input, positive.
1	MIC_4P	Analog	Alternative function:
	_	5	 Differential audio line input 4,positive
			Microphone differential 4 input, negative.
2	MIC_4N	Analog	Alternative function:
	_	5	Differential audio line input 4,negative
		Digital: Bidirectional with	Programmable I/O line 20.
3	PIO[20]	programmable strength	Alternative function:
		internal pull-up/pull-down	■ PCM_DOUT[1]
		Digital: Bidirectional with	Programmable I/O line 19.
4	PIO[19]	programmable strength	Alternative function:
		internal pull-up/pull-down	■ PCM_DIN[0]
		Digital: Bidirectional with	Programmable I/O line 18.
5	PIO[18]	programmable strength	Alternative function:
		internal pull-up/pull-down	■ PCM_DOUT[0]
		Digital: Bidirectional with	Programmable I/O line 17.
6	PIO[17]	programmable strength	Alternative function:
		internal pull-up/pull-down	■ PCM_SYNC
		Digital: Bidirectional with	Programmable I/O line 16.
7	PIO[16]	programmable strength	Alternative function:
		internal pull-up/pull-down	PCM_CLK
		Digital: Bidirectional with	Programmable I/O line 15.
8	PIO[15]	programmable strength	Alternative function:
		internal pull-up/pull-down	MCLK_OUT
9	VBAT_SENSE	Analog	Battery voltage sense input.
10	USB_DN	Digital	USB Full Speed device D- I/O.
11	USB_DP	Digital	USB Full Speed device D+ I/O.
12	VCHG	Supply	Supply to SMPS power switch from battery.
			Charger input sense pin. High
13	VCHG_SENSE	Analog	impedance. Connect VCHG_SENSE
	_		direct to SMPS_VCHG.
			External charger transistor current
			control. Connect to base of external
14	CHG_EXT	Analog	charger transistor as per application
			schematic.
			Typically connected to an ON/OFF push
			button. If power is present from the
			battery and/or charger, and software has
			placed the device in the OFF or
15	SYS_CTRL	Digital input	DORMANT state, a button press boots
			the device. Also usable as a digital input
			in normal operation. No pull.
			Additional function:
			 PIO[0] input only

16	VBAT	Supply	Battery voltage input.
17	GND	Ground	Ground
		Analog or digital input/	General-purpose analog/digital input or
18	8 AIO0/LED0	open drain output.	open drain LED output.
		Analog or digital input/	General-purpose analog/digital input or
19	9 AIO1/LED1	open drain output.	open drain LED output.
		Analog or digital input/	General-purpose analog/digital input or
20	AIO2/LED2	open drain output.	open drain LED output.
		Analog or digital input/	General-purpose analog/digital input or
21	AIO3/LED3	open drain output.	open drain LED output.
22	NC	NC	NC
23	GND	Ground	Ground
24	1V8_SMPS	Supply	1.8V voltage output.
25	VDD_PADS6	Supply	1.8 V/3.3 V PIO supply.
26	VDD_PADS1_3	Supply	1.8 V/3.3 V PIO supply.
		Digital: Bidirectional with	Programmable I/O line 4.
27	PIO[4]	programmable strength	Alternative function:
		internal pull-up/pull-down	■ TBR_MOSI[1]
		Digital: Bidirectional with	Programmable I/O line 3.
28	PIO[3]	programmable strength	Alternative function:
	- [-]	internal pull-up/pull-down	■ TBR_MISO[2]
		Digital: Bidirectional with	Programmable I/O line 6.
29	PIO[6]	programmable strength	Alternative function:
		internal pull-up/pull-down	■ TBR_MOSI[0]
		Digital: Bidirectional with	Programmable I/O line 5.
30	PIO[5]	programmable strength	Alternative function:
		internal pull-up/pull-down	■ TBR_MISO[1]
		Digital: Bidirectional with	Programmable I/O line 8.
31	PIO[8]	programmable strength	Alternative function:
		internal pull-up/pull-down	■ TBR_CLK
		Digital: Bidirectional with	Programmable I/O line 7.
32	PIO[7]	programmable strength	Alternative function:
		internal pull-up/pull-down	■ TBR_MISO[0]
		Digital: Bidirectional with	Programmable I/O line 2.
33	PIO[2]	programmable strength	Alternative function:
		internal pull-up/pull-down	■ TBR_MISO[3]
			Automatically defaults to
			RESET# mode when the device is unpowered, or in
34	PIO[1]	Digital: Bidirectional with	off modes.
		programmable strength	Reconfigurable as a PIO after boot.
		internal pull-up/pull-down	Alternative function:
			■ Programmable I/O line 1
		Digital: Bidirectional with	Programmable I/O line 21.
35	PIO[21]	programmable strength	Alternative function:
		internal pull-up/pull-down	■ PCM_DOUT[2]

			Headphone/speaker differential 2
36	SPK_RN	Analog	output, negative.
30		Analog	Alternative function:
			Differential line output 2, negative
			Headphone/speaker differential 2
07			output, positive.
37	SPK_RP	Analog	Alternative function:
			 Differential line output 2, positive
			Headphone/speaker differential 1
00			output, negative.
38	SPK_LN	Analog	Alternative function:
			 Differential line output 1, negative
			Headphone/speaker differential 1
			output, positive.
39	SPK_LP	Analog	Alternative function:
			 Differential line output 1, positive
40	GND	Ground	Ground
41	MIC_BIAS	Analog	Mic bias output.
			Microphone differential 2 input,
			negative.
42	MIC_2N	Analog	Alternative function:
			 Differential audio line input 2,
			negative
			Microphone differential 2 input, positive.
40			Alternative function:
43	MIC_2P	Analog	 Differential audio line input 2,
			positive
			Microphone differential 1 input,
			negative.
44	MIC_1N	Analog	Alternative function:
			 Differential audio line input 1,
			negative
			Microphone differential 1 input, positive.
	MIC_1P		Alternative function:
45		Analog	 Differential audio line input 1,
			positive
46	GND	Ground	Ground
			Microphone differential 3 input,
			negative.
47	MIC_3N	Analog	Alternative function:
	_		 Differential audio line input 3,
			negative
			Microphone differential 3 input, positive.
48	MIC_3P	Analog	Alternative function:
-			 Differential audio line input 3,

			positive
49	GND	Ground	Ground
50	BT_ANT	RF	Bluetooth transmit/receive.
51	GND	Ground	Ground
		Digital: Bidirectional with	Programmable I/O line 39.
52	PIO[39]	programmable strength	Alternative function:
		internal pull-up/pull-down	■ QSPI2_IO[3]
		Digital: Bidirectional with	Programmable I/O line 38.
53	PIO[38]	programmable strength	Alternative function:
		internal pull-up/pull-down	■ QSPI2_CS0#
		Digital: Bidirectional with	Programmable I/O line 37.
54	PIO[37]	programmable strength	Alternative function:
		internal pull-up/pull-down	■ QSPI2_IO[1]
		Digital: Bidirectional with	Programmable I/O line 36.
55	PIO[36]	programmable strength	Alternative function:
		internal pull-up/pull-down	■ QSPI2_IO[2]
		Digital: Bidirectional with	Programmable I/O line 35.
56	PIO[35]	programmable strength	Alternative function:
		internal pull-up/pull-down	■ QSPI2_CLK
		Digital: Bidirectional with	Programmable I/O line 34.
57	PIO[34]	programmable strength	Alternative function:
		internal pull-up/pull-down	■ QSPI2_IO[0]
58	XTAL_CLKOUT	Analog	Buffered clock output.


7 Electrical Characteristics

7.1 Absolute Maximum Ratings

Rating	Minimum	Maximum
Storage temperature	-40 ℃	+85 ℃

7.2 Recommended Operating Conditions

Operating Condition	Minimum	Maximum
Operating temperature range	-40 ℃	+85 ℃
Supply voltage: VBAT	+2.8V	+4.3V

8 Recommended reflow temperature profile

The module Must go through 125 $^\circ\!\mathrm{C}$ baking for at least 9 hours before SMT AND IR reflow process!

若拆封后未立即上线, 天嘉润科技建议让下次上线前务必以 125℃烘烤 9 小时以上!

		-
Data	Revision	Description
2022-03-03	V1.0	Original publication of this document.

Record of Changes

IMPORTANT NOTICE

Sky Jiarun Technologies Co.,Ltd (SJR) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current. All products are sold subject to the SJR terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

SJR warrants performance of its products to specifications applicable at the time of sale in accordance with SJR's standard warranty. Testing and other quality control techniques are utilized to the extent SJR deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

In order to minimize risks associated with customer applications, adequate design and operating safeguards must be used by the customer to minimize inherent or procedural hazards. SJR products are not authorized for use as critical components in life support devices or systems without the express written approval of an officer of the company. Life support devices or systems are devices or systems that are intended for surgical implant into the body, or support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided, can be reasonably expected to result in a significant injury to the user. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

SJR assumes no liability for applications assistance or customer product design. SJR does not warrant or represent that any license, either express or implied, is granted under any patent right, mask work right, or other intellectual property right of SJR covering or relating or any combination, machine, or process in which such products or services might be or are used.

Tel: (0755) 85279490

Fax: (0755) 85279683

Web: www.tianjiarun.com

E-mail: <u>sales@tianjiarun.com</u>